(10(x^2-49))/(3x(x^2-4)(x+1))=0

Simple and best practice solution for (10(x^2-49))/(3x(x^2-4)(x+1))=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (10(x^2-49))/(3x(x^2-4)(x+1))=0 equation:



(10(x^2-49))/(3x(x^2-4)(x+1))=0
Domain of the equation: (3x(x^2-4)(x+1))!=0
x∈R
We multiply all the terms by the denominator
(10(x^2-49))=0
We calculate terms in parentheses: +(10(x^2-49)), so:
10(x^2-49)
We multiply parentheses
10x^2-490
Back to the equation:
+(10x^2-490)
We get rid of parentheses
10x^2-490=0
a = 10; b = 0; c = -490;
Δ = b2-4ac
Δ = 02-4·10·(-490)
Δ = 19600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{19600}=140$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-140}{2*10}=\frac{-140}{20} =-7 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+140}{2*10}=\frac{140}{20} =7 $

See similar equations:

| 6(x-5)+2=8(2x-5)+22 | | 2.1+u/3=-5.4 | | 9x^2-21x-21x+49=0 | | 3x+13=-4 | | (a-7)=33 | | 1/2x-2/3=-3/7 | | 6k-2=-14 | | 7x−26∘=5x+10∘ | | 88b+42b+-69=61 | | -7+x=0.x-16 | | 4(x-1)=1/2x(x-8) | | -9+8x=8x-12 | | m-31-37=-36 | | 5d+7=180 | | 3x3x3=27 | | 64-v=-11 | | 221/17=x | | 1/5(x-10)=15x | | -7v+5v-6v=v | | 13j+6j+-12j=-14 | | -6f+13=f2-11 | | 6j-6j+j-1=11 | | 2p+8+3=2p+7 | | 736/28-y+5y=612y/y | | 8r+4=8r+2 | | 2p+8+8=2p+7 | | 4|x+5|-2=10 | | Y=7+9x | | -17y+12y=20 | | 3x(4x6)=8×8 | | 2.1=u/4=-5.4 | | -7v-v=-5v+6v |

Equations solver categories